Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563620

RESUMEN

BACKGROUND: Most microorganisms that cause food decay and the lower the shelf life of foods are fungi. Nanotechnologies can combat various diseases and deal with the application of nanomaterial to target cells or tissues. In this study selenium nanoparticles (Se-NPs) were synthesized using ascorbic acid and characterized by ultraviolet-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction and zeta potential. The different concentrations of As/Se-NPs were tested against various fungi, including Alternaria linicola, Alternaria padwickii, Botrytis cinerea, Bipolaris sp., Cephalosporium acremonium, Fusarium moniliform and Fusarium semitectum. This study tested the influence of coated As/Se-NPs on healthy strawberry fruits and those infected with Botrytis cinerea during 16 days of storage, with regard to shelf life, decay percentage, weight loss, total titratable acidity percentage, total soluble solids content (TSS) and anthocyanin content. RESULTS: Energy-dispersive X-ray analysis showed only two elements: selenium and oxygen. TEM images showed that the nanoparticles ranged in size between 26 to 39 nm and were rhombohedral in shape. Se-NPs showed antifungal activity against all tested fungi, the most effective being against Botrytis cinerea, Cephalosporium acremonium and Fusarium semitectum. During storage periods of strawberries fruits coated with As/Se-NPs, the shelf life was increased, and the number of decaying fruits was less than in control (uncoated) and coated infected fruits. The decline in weight loss was lower in coated fruits than in control fruits. CONCLUSION: These findings demonstrated that As/Se-NPs could effectively maintain the postharvest quality of strawberries, even when the fruit was infected with B. cinerea. © 2024 Society of Chemical Industry.

2.
Front Bioeng Biotechnol ; 12: 1348365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544976

RESUMEN

Biosurfactants are surface-active molecules with unique qualities and various uses. Many microorganisms produce secondary metabolites with surface-active characteristics that serve various antiviral functions. The HIV and Zika viruses were chosen for this study because they can spread from mother to child and result in potentially fatal infections in infants. Halophilic bacteria from the Red Sea solar saltern in Egypt were screened using drop collapse, emulsification activity, and oil displacement assays to produce biosurfactants and emulsifiers. Halobacterium jilantaiense strain JBS1 was the most effective strain of the Halobacteriaceae family. It had the best oil displacement test and emulsification activity against kerosene and crude oil, respectively. Among the ten isolates, it produced the most promising biosurfactant, also recognized by the GC-MASS library. This study evaluated biosurfactants from halophilic bacteria as potential antiviral drugs. Some of the computer methods we use are molecular docking, ADMET, and molecular dynamics. We use model organisms like the HIV reverse transcriptase (PDB: 5VZ6) and the Zika virus RNA-dependent RNA polymerase (ZV-RdRP). Molecular docking and molecular dynamics make the best complexes with 5VZ6 HIV-RT and flavone (C25) and 5wz3 ZV-RdRP and ethyl cholate (C8). Testing for ADMET toxicity on the complex revealed that it is the safest medicine conceivable. The 5VZ6-C25 and 5wz3-C8 complexes also followed the Lipinski rule. They made five hydrogen bond donors and ten hydrogen bond acceptors with 500 Da MW and a 5:1 octanol/water partition coefficient. Finally, extreme settings require particular adaptations for stability, and extremophile biosurfactants may be more stable.

3.
Front Bioeng Biotechnol ; 12: 1348344, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544980

RESUMEN

Active components in medicinal plants provide unlimited useful and traditional medicines. Antimicrobial activities are found in secondary metabolites in plant extracts such as argan oil. This experimental investigation aims to determine argan oil's volatile compounds and examine their in vitro antimicrobial properties. In silico simulations, molecular docking, pharmacokinetics, and drug-likeness prediction revealed the processes underlying the in vitro biological possessions. Gas chromatography-mass spectrometry (GC/MS) was used to screen argan oil's primary components. In silico molecular docking studies were used to investigate the ability of the selected bioactive constituents of argan oil to act effectively against Pseudomonas aeruginosa and Staphylococcus aureus (S. aureus) isolated from infections. The goal was to study their ability to interact with both bacteria's essential therapeutic target protein. The 21 chemicals in argan oil were identified by GC/MS. Docking results for all compounds with S. aureus and P. aeruginosa protease proteins ranged from -5 to -9.4 kcal/mol and -5.7 to -9.7 kcal/mol, respectively, compared to reference ligands. Our docking result indicates that the 10-octadecenoic acid, methyl ester was the most significant compound with affinity scores of -9.4 and -9.7 kcal/mol for S. aureus and P. aeruginosa proteins, respectively. The minimal bactericidal concentration (MBC) and minimal inhibitory concentration (MIC) of argan oil were 0.7 ± 0.03 and 0.5 ± 0.01 for S. aureus and 0.4 ± 0.01 and 0.3 ± 0.02 for P. aeruginosa, respectively. We confirmed the antimicrobial properties of argan oil that showed significant growth inhibition for S. aureus and P. aeruginosa.

4.
3 Biotech ; 13(12): 412, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37997597

RESUMEN

The present research aimed to understand the influence of plant growth-promoting bacteria (PGPB) on various biochemical, nutritional, and pharmaceutical characteristics of Marrubium vulgare plants grown under elevated carbon dioxide (eCO2). To achieve this objective, a pot experiment was carried out, consisting of two treatments, namely: (i) biofertilization (Bf) by a PGPB strain (Micromonospora sp.) and (ii) two different air CO2 levels, including ambient CO2 (aCO2) and eCO2 concentrations (410 and 710 µmol CO2 mol-1, respectively). The improvement in the photosynthesis rate of eCO2 and Bf-treated plants can explain the increase in the production of carbohydrate. This is evidenced by a substantial rise, reaching up to + 75% and 25% in the total sugar and starch content in plants subjected to eCO2 treatment, respectively. Additionally, eCO2-treated plants exhibited a remarkable 102% increase in soluble sugar synthesis, while plants subjected to Bf treatment showed a notable increase of 66%. Such modifications could be the main factor affecting plants carbon and nitrogen metabolism. Although the level of certain amino acids (such as glycine, tyrosine, and phenylalanine) in plants exhibited significant increases in response to eCO2 and Bf, the levels of other amino acids demonstrated enhancements in plants grown under eCO2 (e.g., histidine) or under treatments containing Bf (e.g., alanine and ornithine). Improvements in primary metabolites led to more benefits in plants treated with Bf and CO2 by boosting secondary metabolites accumulation, including phenolics (+ 27-100%), flavonoids (+ 30-92%), and essential oils (up to + 296%), as well as improved antioxidant capacity (FRAP). This remarkable effectiveness was evident in the significant increase in the biomass production, highlighting the synergistic impact of the treatments. Therefore, the interaction of Bf and eCO2 not only induced plant biomass accumulation but also improved the nutritional and pharmaceutical value of M. vulgare plants.

5.
Saudi J Biol Sci ; 30(12): 103841, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38020223

RESUMEN

The El-Rawda solar saltern, located in North Sinai, Egypt, is formed through the process of water evaporation from the Bradawil lagoon. This evaporation leads to the precipitation of gypsum, halite minerals, and salt flats, which subsequently cover the southern and eastern areas of the lagoon. This study employed the shotgun metagenomic approach, the illumine platform, and bioinformatic tools to investigate the taxonomic composition and functional diversity of halophilic microbial communities in solar saltern. The metagenomic reads obtained from the brine sample exhibited a greater count compared to those from the sediment sample. Notably, the brine sample was primarily characterized by an abundance of archaea, while the sediment sample displayed a dominant abundance of bacteria. Both samples exhibited a relatively low abundance of eukaryotes, while viruses were only found in the brine sample. Furthermore, the comparative analysis of functional pathways showed many important processes related to central metabolism and protein processing in brine and sediment samples. In brief, this research makes a valuable contribution to the understanding of very halophilic ecosystems in Egypt, providing insights into their microbial biodiversity and functional processes.

6.
J Plant Physiol ; 280: 153876, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36444822

RESUMEN

Heavy metal (e.g. cobalt) pollution causes a serious of environmental and agricultural problems. On the other hand, plant growth-promoting microorganisms enhance plant growth and mitigate heavy metal stress. Herein, we isolated and identified the unclassified species strain NARS9, belong to Haloferax,. Cobalt (Co, 200 mg/kg soil) stress mitigating impact of the identified on wheat grains yield, primary and secondary metabolism and grain quality was investigated. Co alone significantly induced Co accumulation in wheat grain (260%), and consequently reduced wheat yield (130%) and quality. Haloferax NARS9 alone significantly enhanced grain chemicals composition (i.e., total sugars (89%) and organic acids (e.g., oxalic and isobutyric acids), essential amino acids (e.g., threonine, lysine, and histidine) and unsaturated fatty acids (e.g. eicosenoic, erucic and tetracosenoic acids). Interestingly, Co stress induced wheat grain yield, reduction were significantly mitigated by Haloferax NARS9 treatment by 26% compared to Co stress alone. Under Co stress, Haloferax NARS9 significantly increased sugar metabolism including sucrose and starch levels and their metabolic enzymes (i.e. invertases, sucrose synthase, starch synthase). This in turn increased organic acid (e.g. oxalic (70%) and malic acids (60%)) and amino acids. levels and biosynthetic enzymes, e.g. glutamine synthetase and threonine synthase. Increased sugars levels by Haloferax NARS9 under Co treatment also provided a route for the biosynthesis of saturated fatty acids, particularly palmitic and stearic acids. Furthermore, Haloferax NARS9 treatment supported the wheat nutritive value through increasing minerals (Ca, Fe, Mn, Zn) and antioxidants i.e., polyphenol, flavonoids, ASC and GSH and total polyamines by 50%, 110%, 400%, 30%, and 90% respectively). These in parallel with the increase in the activity of (phenylalanine ammonia-lyase (110%) in phenolic metabolism). Overall, this study demonstrates the potentiality of Haloferax NARS9 in harnessing carbon and nitrogen metabolism differentially in wheat plants to cope with Co toxicity. Our results also suggested that the use of Haloferax NARS9 in agricultural fields can improve growth and nutritional value of wheat grains.


Asunto(s)
Grano Comestible , Triticum , Triticum/metabolismo , Suelo/química , Cobalto/metabolismo , Azúcares/metabolismo
7.
Molecules ; 27(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36364191

RESUMEN

This work aims to characterize the haloarchaeal diversity of unexplored environmental salty samples from a hypersaline environment on the southern coast of Jeddah, Saudi Arabia, looking for new isolates able to produce polyhydroxyalkanoates (PHAs). Thus, the list of PHA producers has been extended by describing two species of Halolamina; Halolamina sediminis sp. strain NRS_35 and unclassified Halolamina sp. strain NRS_38. The growth and PHA-production were investigated in the presence of different carbon sources, (glucose, sucrose, starch, carboxymethyl cellulose (CMC), and glycerol), pH values, (5-9), temperature ranges (4-65 °C), and NaCl concentrations (100-350 g L-1). Fourier-transform infra-red analysis (FT-IR) and Liquid chromatography-mass spectrometry (LC-MS) were used for qualitative identification of the biopolymer. The highest yield of PHB was 33.4% and 27.29% by NRS_35 and NRS_38, respectively, using starch as a carbon source at 37 °C, pH 7, and 25% NaCl (w/v). The FT-IR pattern indicated sharp peaks formed around 1628.98 and 1629.28 cm-1, which confirmed the presence of the carbonyl group (C=O) on amides and related to proteins, which is typical of PHB. LC-MS/MS analysis displayed peaks at retention times of 5.2, 7.3, and 8.1. This peak range indicates the occurrence of PHB and its synthetic products: Acetoacetyl-CoA and PHB synthase (PhaC). In summary, the two newly isolated Halolamina species showed a high capacity to produce PHB using different sources of carbon. Further research using other low-cost feedstocks is needed to improve both the quality and quantity of PHB production. With these results, the use of haloarchaea as cell factories to produce PHAs is reinforced, and light is shed on the global concern about replacing plastics with biodegradable polymers.


Asunto(s)
Polihidroxialcanoatos , Cloruro de Sodio , Cloruro de Sodio/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Cromatografía Liquida , Espectrometría de Masas en Tándem , Polihidroxialcanoatos/química , Carbono/metabolismo , Almidón , Hidroxibutiratos/química
8.
Polymers (Basel) ; 14(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35956720

RESUMEN

The latest advancements in cellulose and its derivatives are the subject of this study. We summarize the characteristics, modifications, applications, and properties of cellulose. Here, we discuss new breakthroughs in modified cellulose that allow for enhanced control. In addition to standard approaches, improvements in different techniques employed for cellulose and its derivatives are the subject of this review. The various strategies for synthetic polymers are also discussed. The recent advancements in polymer production allow for more precise control, and make it possible to make functional celluloses with better physical qualities. For sustainability and environmental preservation, the development of cellulose green processing is the most abundant renewable substance in nature. The discovery of cellulose disintegration opens up new possibilities for sustainable techniques. Based on the review of recent scientific literature, we believe that additional chemical units of cellulose solubility should be used. This evaluation will evaluate the sustainability of biomass and processing the greenness for the long term. It appears not only crucial to dissolution, but also to the greenness of any process.

9.
Front Plant Sci ; 13: 872654, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35665142

RESUMEN

Soil contamination with cobalt (Co) negatively impacts plant growth and production. To combat Co toxicity, plant growth-promoting microorganisms for improving plant growth are effectively applied. To this end, unclassified haloarchaeal species strain NRS_31 (OL912833), belonging to Haloferax genus, was isolated, identified for the first time, and applied to mitigate the Co phytotoxic effects on maize plants. This study found that high Co levels in soil lead to Co accumulation in maize leaves. Co accumulation in the leaves inhibited maize growth and photosynthetic efficiency, inducing oxidative damage in the tissue. Interestingly, pre-inoculation with haloarchaeal species significantly reduced Co uptake and mitigated the Co toxicity. Induced photosynthesis improved sugar metabolism, allocating more carbon to defend against Co stress. Concomitantly, the biosynthetic key enzymes involved in sucrose (sucrose-P-synthase and invertases) and proline (pyrroline-5- carboxylate synthetase (P5CS), pyrroline-5-carboxylate reductase (P5CR)) biosynthesis significantly increased to maintain plant osmotic potential. In addition to their osmoregulation potential, soluble sugars and proline can contribute to maintaining ROS hemostasis. Maize leaves managed their oxidative homeostasis by increasing the production of antioxidant metabolites (such as phenolics and tocopherols) and increasing the activity of ROS-scavenging enzymes (such as POX, CAT, SOD, and enzymes involved in the AsA/GSH cycle). Inside the plant tissue, to overcome heavy Co toxicity, maize plants increased the synthesis of heavy metal-binding ligands (metallothionein, phytochelatins) and the metal detoxifying enzymes (glutathione S transferase). Overall, the improved ROS homeostasis, osmoregulation, and Co detoxification systems were the basis underlying Co oxidative stress, mitigating haloarchaeal treatment's impact.

10.
Molecules ; 27(10)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35630600

RESUMEN

Calotropis procera (C. procera) is a wild shrub that is a medicinal plant found in abundance throughout Saudi Arabia. In this study, we investigated the phytochemical composition and antigenotoxic properties of the ethanolic extract of C. procera, in addition to the antimicrobial activity of the plant and its rhizospheric actinobacteria effects against pathogenic microorganisms. Soil-extract medium supplemented with glycerol as a carbon source and starch-casein agar medium was used for isolation of actinobacteria from rhizosphere. From the plant, a total of 31 compounds were identified using gas chromatography/mass spectrometry (GC-MS). The main components were α-amyrin (39.36%), lupeol acetate (17.94%), phytol (13.32%), hexadecanoic acid (5.55%), stigmasterol (3.16%), linolenic acid (3.04%), and gombasterol A (2.14%). C. procera plant extract's antimicrobial activity was investigated using an agar well-diffusion assay and minimum inhibitory concentration (MIC) against six pathogenic microbial strains. The plant extract of C. procera was considered significantly active against Staphylococcus aureus, Klebsiella pneumonia, and Escherichia coli, with inhibition zones of 18.66 mm, 21.26 mm, and 21.93 mm, respectively. The plant extract was considered to be a moderate inhibitor against Bacillus subtilis, with MIC ranging from 0.60-1.50 mg/mL. On the other hand, the isolated actinobacteria were considered to be a moderate inhibitor against S. aureus (MIC of 86 µg/mL), and a potent inhibitor, strain CALT_2, against Candida albicans (MIC of 35 µg/mL). The 16S rRNA gene sequence analysis showed that the potential strains belonged to the genus Streptomyces. The effect of C. procera extract against cyclophosphamide (CP)-induced genotoxicity was examined by evaluating chromosome abnormalities in mouse somatic cells and DNA fragmentation assays. The current study revealed that oral pretreatment of C. procera (50, 100, and 200 mg/kg b.w.) for 1, 7, and 14 days to cyclophosphamide-treated animals significantly reduced chromosomal abnormalities as well as DNA fragmentation in a dose-dependent manner. Moreover, C. procera extract had antimicrobial and antigenotoxic effects against CP-induced genotoxicity.


Asunto(s)
Actinobacteria , Antiinfecciosos , Calotropis , Streptomyces , Actinobacteria/genética , Agar , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Calotropis/química , Ciclofosfamida , Ratones , Extractos Vegetales/química , ARN Ribosómico 16S , Rizosfera , Staphylococcus aureus , Streptomyces/genética
11.
Antibiotics (Basel) ; 11(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35453243

RESUMEN

Raw milk is a significant vehicle for the transmission of different infections. In the present study, we focused on Salmonella enterica from raw milk and its resistance to various antibacterial drugs. Furthermore, we have investigated the antimicrobial and antibiofilm effects of essential oil (EO) obtained from Salvia officinalis L. leaves that were collected from the Aljouf region, Saudi Arabia, against S. enterica. One-dozen strains of S. enterica were found in a batch of a hundred milk samples, and those S. enterica strains were shown to be resistant to several antibiotics, particularly the ß-lactam group of antimicrobial drugs. Against multidrug-resistant S. enterica, the inhibitory zones for EO from S. officinalis leaves were found to be 21 mm in diameter. S. officinalis EO at 5% concentration showed a remarkable in vitro inhibitory activity toward the biofilm growth of different S. enterica isolates. Analysis of EO by GC-MS identified 21 distinct components, accounting for 89.94% of the total oil component. The most prominent compounds were 1,8-cineole (39.18%), ß-caryophyllene (12.8%), and α--terpineol (10.3%). Taken together, our results unequivocally confirm that the S. officinalis EOs exert numerous bioactivities. Thus, the well-deserved attention on S. officinalis EO usage as a food preservative and adjunctive remedy for bacterial food-borne diseases is justified.

12.
Metabolites ; 12(2)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35208207

RESUMEN

A strain of Bacillus cereus was isolated from the Saudi Red Sea coast and identified based on culture features, biochemical characteristics, and phylogenetic analysis of 16S rRNA sequences. EPSR3 was a major fraction of exopolysaccharides (EPS) containing no sulfate and had uronic acid (28.7%). The monosaccharide composition of these fractions is composed of glucose, galacturonic acid, and arabinose with a molar ratio of 2.0: 0.8: 1.0, respectively. EPSR3 was subjected to antioxidant, antitumor, and anti-inflammatory activities. The results revealed that the whole antioxidant activity was 90.4 ± 1.6% at 1500 µg/mL after 120 min. So, the IC50 value against DPPH radical found about 500 µg/mL after 60 min. While using H2O2, the scavenging activity was 75.1 ± 1.9% at 1500 µg/mL after 60 min. The IC50 value against H2O2 radical found about 1500 µg/mL after 15 min. EPSR3 anticytotoxic effect on the proliferation of (Bladder carcinoma cell line) (T-24), (human breast carcinoma cell line) (MCF-7), and (human prostate carcinoma cell line) (PC-3) cells. The calculated IC50 for cell line T-24 was 121 ± 4.1 µg/mL, while the IC50 for cell line MCF-7 was 55.7 ± 2.3 µg/mL, and PC-3 was 61.4 ± 2.6 µg/mL. Anti-inflammatory activity was determined for EPSR3 using different methods as Lipoxygenase (LOX) inhibitory assay gave IC50 12.9 ± 1.3 µg/mL. While cyclooxygenase (COX-2) inhibitory test showed 29.6 ± 0.89 µg /mL. EPSR3 showed potent inhibitory activity against methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative staphylococci. The exposure times of EPSR3 for the complete inhibition of cell viability of methicillin resistant S. aureus was found to be 5% at 60 min. Membrane stabilization inhibitory gave 35.4 ± 0.67 µg/mL. EPSR3 has antitumor activity with a reasonable margin of safety. The antitumor activity of EPSR3 may be attributed to its content from uronic acids with potential for cellular antioxidant and anticancer functional properties.

13.
Plant Physiol Biochem ; 171: 226-239, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973889

RESUMEN

Tungsten nanoparticles (WNPs) could induce hazard impact on plant growth and development; however, no study investigated their phytotoxicity. On the other hand, plant growth-promoting bacteria (PGPB) can effectively reduce WNPs toxicity. To this end, Nocardiopsis sp. was isolated and employed to mitigate the phytotoxic effect of WNPs on three crops (wheat, barley, and oat). Soil contamination with WPNs induced the W accumulation in all tested crops, inhibited both growth and photosynthesis and induced oxidative damage. On the other hand, pre-inoculation with Nocardiopsis sp. significantly reduced W level in treated plants. Concomitantly, Nocardiopsis sp. strikingly mitigated the inhibitory effect of WNPs by augmenting both growth and reactive oxygen species (ROS) homeostasis. To cope with heavy metal stress, all the tested species orchestrated their antioxidant homeostasis through enhancing the production of antioxidant metabolites (e.g., phenolics, flavonoids and tocopherols) and elevated the activities of ROS-scavenging enzymes (e.g., APX, POX, CAT, as well as the enzymes involved in AsA/GSH cycle). Moreover, pre-inoculation with Nocardiopsis sp. improved the detoxification metabolism by enhancing the accumulation of phytochelatins (PCs), metallothionein (MTC) and glutathione-S-transferase (GST) in grasses grown in WNPs-contaminated soils. Overall, restrained ROS homeostasis and improved WNPs detoxification systems were the bases underlie the WNPs stress mitigating impact of Nocardiopsis sp treatment.


Asunto(s)
Nanopartículas , Tungsteno , Antioxidantes/metabolismo , Grano Comestible/metabolismo , Estrés Oxidativo
14.
Environ Sci Pollut Res Int ; 28(44): 62853-62867, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34218379

RESUMEN

Drought is a significant global constraint on agricultural production and food security. As a promising approach to improve plant growth and yield under challenging conditions, plant growth-promoting actinobacteria has attracted much interest. Further, elevated levels of atmospheric CO2 (eCO2) may promote the plant-actinobacteria interactions which could be effective to improve the plant growth for food production. Herein, we have investigated the impact of actinobacteria and/or CO2 on biomass production, photosynthesis, macronutrients, levels of organic acids, amino acids, and essential oils as well as antioxidant activities of Satureja hortensis under water-deficit conditions. Among different actinobacterial isolates evaluated for development of secondary metabolites and biological activities, Ac9 was highly capable of producing flavonoids, and it also showed high antioxidant and microbial activities. It markedly induced the plant growth, photosynthesis, and global metabolic improvement, under water-deficit conditions. Interestingly, treatment with Ac9 in combination with eCO2 substantially minimized drought stress-induced biomass and photosynthesis reductions in Satureja hortensis. Improved photosynthesis by Ac9 and/or eCO2 induced the primary and secondary metabolisms in drought-stressed plants. The levels of the majority of the detected organic acids, essential oil, and amino acids were further improved as a result of the synergistic action of Ac9 and eCO2, as compared to the individual treatments. Furthermore, Ac9 or eCO2 significantly improved the antioxidant activities in stressed plants; however, much more positive impact was obtained by their synchronous application. Thus, the current study suggests that actinobacterial treatment induces global metabolic changes in water-stressed Satureja hortensis, the effects that have been much more strengthened under eCO2.


Asunto(s)
Actinobacteria , Satureja , Dióxido de Carbono/análisis , Sequías , Fotosíntesis , Arabia Saudita
15.
Physiol Plant ; 173(3): 978-992, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34237152

RESUMEN

The use of plant growth-promoting bacteria (PGPB) to enhance plant growth and protection against heavy metal toxicity has been extensively studied. However, its potentiality to reduce arsenate toxicity, a threat to plant growth and metabolism, has been hardly investigated. Moreover, the toxic effect of arsenic oxide nanoparticles (As-NPs) on plants and possible mechanisms for its alleviation has not yet been explored. In this study, the impact of the bioactive actinomycete Streptomyces spp. on the growth, physiology and stress-related metabolites, such as sugars and proline, on As-NPs-stressed wheat and maize plants was investigated. Soil amendment with arsenic oxide nanoparticles (As-NPs) induced the uptake and accumulation of As in the plants of both species, resulting in reduced growth and photosynthesis, but less marked in maize than in wheat plants. Under As-NPs-free conditions, Streptomyces spp. treatment markedly improved growth and photosynthesis in wheat only. The application of Streptomyces spp. reduced As accumulation, recovered the As-NPs-induced growth, photosynthesis inhibition, and oxidative damage in plants of both species. Wheat plants specifically accumulated soluble sugars, while both species accumulated proline. Under As-NPs stress, the ornithine pathway of proline biosynthesis was more important in maize than in wheat plants, while the glutamine pathway was dominant in wheat ones. The addition of Streptomyces spp. further induced the accumulation of proline and starch in both plant species. Overall, despite a different response to Streptomyces spp. under nontoxic conditions, the amendment of as-contaminated soil with Streptomyces spp. induced similar metabolic responses in the two tested species, which trigger stress recovery.


Asunto(s)
Actinobacteria , Arsénico , Nanopartículas , Arsénico/toxicidad , Óxidos , Suelo , Triticum , Zea mays
16.
AMB Express ; 11(1): 75, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34041605

RESUMEN

Haloferax sp strain NRS1 (MT967913) was isolated from a solar saltern on the southern coast of the Red Sea, Jeddah, Saudi Arabia. The present study was designed for estimate the potential capacity of the Haloferax sp strain NRS1 to synthesize (silver nanoparticles) AgNPs. Biological activities such as thrombolysis and cytotoxicity of biosynthesized AgNPs were evaluated. The characterization of silver nanoparticles biosynthesized by Haloferax sp (Hfx-AgNPs) was analyzed using UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The dark brown color of the Hfx-AgNPs colloidal showed maximum absorbance at 458 nm. TEM image analysis revealed that the shape of the Hfx-AgNPs was spherical and a size range was 5.77- 73.14 nm. The XRD spectra showed a crystallographic plane of silver nanoparticles, with a crystalline size of 29.28 nm. The prominent FTIR peaks obtained at 3281, 1644 and 1250 cm- 1 identified the Functional groups involved in the reduction of silver ion reduction to AgNPs. Zeta potential results revealed a negative surface charge and stability of Hfx-AgNPs. Colloidal solution of Hfx-AgNPs with concentrations ranging from 3.125 to 100 µg/mL was used to determine its hemolytic activity. Less than 12.5 µg/mL of tested agent showed no hemolysis with high significant decrease compared with positive control, which confirms that Hfx-AgNPs are considered non-hemolytic (non-toxic) agents according to the ISO/TR 7405-1984(f) protocol. Thrombolysis activity of Hfx-AgNPs was observed in a concentration-dependent manner. Further, Hfx-AgNPs may be considered a promising lead compound for the pharmacological industry.

17.
Mar Drugs ; 19(3)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803653

RESUMEN

Plastic pollution is a worldwide concern causing the death of animals (mainly aquatic fauna) and environmental deterioration. Plastic recycling is, in most cases, difficult or even impossible. For this reason, new research lines are emerging to identify highly biodegradable bioplastics or plastic formulations that are more environmentally friendly than current ones. In this context, microbes, capable of synthesizing bioplastics, were revealed to be good models to design strategies in which microorganisms can be used as cell factories. Recently, special interest has been paid to haloarchaea due to the capability of some species to produce significant concentrations of polyhydroxyalkanoate (PHA), polyhydroxybutyrate (PHB), and polyhydroxyvalerate (PHV) when growing under a specific nutritional status. The growth of those microorganisms at the pilot or industrial scale offers several advantages compared to that of other microbes that are bioplastic producers. This review summarizes the state of the art of bioplastic production and the most recent findings regarding the production of bioplastics by halophilic microorganisms with special emphasis on haloarchaea. Some protocols to produce/analyze bioplastics are highlighted here to shed light on the potential use of haloarchaea at the industrial scale to produce valuable products, thus minimizing environmental pollution by plastics made from petroleum.


Asunto(s)
Archaea/metabolismo , Plásticos Biodegradables/metabolismo , Biopolímeros/biosíntesis , Biotecnología , Tecnología Química Verde
18.
J Microbiol Biotechnol ; 30(8): 1156-1168, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32423190

RESUMEN

Drought stress is threatening the growth and productivity of many economical crops. Therefore, it is necessary to establish innovative and efficient approaches for improving crop growth and productivity. Here we investigated the potentials of the cell-free extract of Actinobacteria (Ac) isolated from a semi-arid habitat (Al-Jouf region, Saudi Arabia) to recover the reduction in maize growth and improve the physiological stress tolerance induced by drought. Three Ac isolates were screened for production of secondary metabolites, antioxidant and antimicrobial activities. The isolate Ac3 revealed the highest levels of flavonoids, antioxidant and antimicrobial activities in addition to having abilities to produce siderophores and phytohormones. Based on seed germination experiment, the selected bioactive fraction of Ac3 cell-free extract (F2.7, containing mainly isoquercetin), increased the growth and photosynthesis rate under drought stress. Moreover, F2.7 application significantly alleviated drought stress-induced increases in H2O2, lipid peroxidation (MDA) and protein oxidation (protein carbonyls). It also increased total antioxidant power and molecular antioxidant levels (total ascorbate, glutathione and tocopherols). F2.7 improved the primary metabolism of stressed maize plants; for example, it increased in several individuals of soluble carbohydrates, organic acids, amino acids, and fatty acids. Interestingly, to reduce stress impact, F2.7 accumulated some compatible solutes including total soluble sugars, sucrose and proline. Hence, this comprehensive assessment recommends the potentials of actinobacterial cell-free extract as an alternative ecofriendly approach to improve crop growth and quality under water deficit conditions.


Asunto(s)
Aclimatación/efectos de los fármacos , Sequías , Streptomyces/metabolismo , Zea mays/fisiología , Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Ácido Ascórbico/metabolismo , Ácidos Grasos , Flavonoides/farmacología , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido , Fotosíntesis , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , ARN Ribosómico 16S/genética , Arabia Saudita , Sideróforos/metabolismo , Streptomyces/clasificación , Streptomyces/genética , Streptomyces/aislamiento & purificación , Estrés Fisiológico/efectos de los fármacos , Zea mays/crecimiento & desarrollo
19.
Genom Data ; 7: 70-2, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26981365

RESUMEN

We report draft genome sequence of Haloterrigena turkmenica strain WANU15, isolated from Soda Lake. The draft genome size is 2,950,899 bp with a G + C content of 64% and contains 49 RNA sequence. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LKCV00000000.

20.
Genom Data ; 6: 25-6, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26697323

RESUMEN

We report draft genome sequence of Stenotrophomonas sp. strain SAM8, isolated from environmental water. The draft genome size is 3,665,538 bp with a G + C content of 67.2% and contains 6 rRNA sequence (single copies of 5S, 16S & 23S rRNA). The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LDAV00000000.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...